Spectral Identification of Disease in Weeds Using Multilayer Perceptron with Automatic Relevance Determination

Author:

Tamouridou Afroditi,Pantazi Xanthoula,Alexandridis ThomasORCID,Lagopodi Anastasia,Kontouris Giorgos,Moshou Dimitrios

Abstract

Microbotryum silybum, a smut fungus, is studied as an agent for the biological control of Silybum marianum (milk thistle) weed. Confirmation of the systemic infection is essential in order to assess the effectiveness of the biological control application and assist decision-making. Nonetheless, in situ diagnosis is challenging. The presently demonstrated research illustrates the identification process of systemically infected S. marianum plants by means of field spectroscopy and the multilayer perceptron/automatic relevance determination (MLP-ARD) network. Leaf spectral signatures were obtained from both healthy and infected S. marianum plants using a portable visible and near-infrared spectrometer (310–1100 nm). The MLP-ARD algorithm was applied for the recognition of the infected S. marianum plants. Pre-processed spectral signatures served as input features. The spectra pre-processing consisted of normalization, and second derivative and principal component extraction. MLP-ARD reached a high overall accuracy (90.32%) in the identification process. The research results establish the capacity of MLP-ARD to precisely identify systemically infected S. marianum weeds during their vegetative growth stage.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Botanic Precision: A Hybrid CNN-RF Model for Accurate Weed Disease Classification;2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI);2024-03-14

2. Forecasting Bank Failure in the U.S.: A Cost-Sensitive Approach;Computational Economics;2024-02-19

3. The Use of Artificial Neural Networks for Determining Values of Selected Strength Parameters of Miscanthus × Giganteus;Sustainability;2022-03-06

4. Agricultural economics;Application of Machine Learning in Agriculture;2022

5. Enhancing crop productivity through autoencoder-based disease detection and context-aware remedy recommendation system;Application of Machine Learning in Agriculture;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3