Tweets Classification on the Base of Sentiments for US Airline Companies

Author:

Rustam Furqan,Ashraf ImranORCID,Mehmood Arif,Ullah SaleemORCID,Choi Gyu

Abstract

The use of data from social networks such as Twitter has been increased during the last few years to improve political campaigns, quality of products and services, sentiment analysis, etc. Tweets classification based on user sentiments is a collaborative and important task for many organizations. This paper proposes a voting classifier (VC) to help sentiment analysis for such organizations. The VC is based on logistic regression (LR) and stochastic gradient descent classifier (SGDC) and uses a soft voting mechanism to make the final prediction. Tweets were classified into positive, negative and neutral classes based on the sentiments they contain. In addition, a variety of machine learning classifiers were evaluated using accuracy, precision, recall and F1 score as the performance metrics. The impact of feature extraction techniques, including term frequency (TF), term frequency-inverse document frequency (TF-IDF), and word2vec, on classification accuracy was investigated as well. Moreover, the performance of a deep long short-term memory (LSTM) network was analyzed on the selected dataset. The results show that the proposed VC performs better than that of other classifiers. The VC is able to achieve an accuracy of 0.789, and 0.791 with TF and TF-IDF feature extraction, respectively. The results demonstrate that ensemble classifiers achieve higher accuracy than non-ensemble classifiers. Experiments further proved that the performance of machine learning classifiers is better when TF-IDF is used as the feature extraction method. Word2vec feature extraction performs worse than TF and TF-IDF feature extraction. The LSTM achieves a lower accuracy than machine learning classifiers.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference52 articles.

1. 2.5 Quintillion Bytes of Data Created Every Day. How Does CPG & Retail Manage It;Jacobson,2013

2. Introduction for the Special Issue on Beyond the Hypes of Geospatial Big Data: Theories, Methods, Analytics, and Applications

3. Opinion Mining and Sentiment Analysis

4. Election 2006 online;Rainie,2007

Cited by 126 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3