Object-Oriented Convolutional Neural Network for Forest Stand Classification Based on Multi-Source Data Collaboration

Author:

Zhao Xiaoqing1,Jing Linhai2,Zhang Gaoqiang1,Zhu Zhenzhou1,Liu Haodong1,Ren Siyuan1

Affiliation:

1. China Aero Geophysical Survey & Remote Sensing Center for Natural Resources, Beijing 100083, China

2. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

Abstract

Accurate classification of forest stand is crucial for protection and management needs. However, forest stand classification remains a great challenge because of the high spectral and textural similarity of different tree species. Although existing studies have used multiple remote sensing data for forest identification, the effects of different spatial resolutions and combining multi-source remote sensing data for automatic complex forest stand identification using deep learning methods still require further exploration. Therefore, this study proposed an object-oriented convolutional neural network (OCNN) classification method, leveraging data from Sentinel-2, RapidEye, and LiDAR to explore classification accuracy of using OCNN to identify complex forest stands. The two red edge bands of Sentinel-2 were fused with RapidEye, and canopy height information provided by LiDAR point cloud was added. The results showed that increasing the red edge bands and canopy height information were effective in improving forest stand classification accuracy, and OCNN performed better in feature extraction than traditional object-oriented classification methods, including SVM, DTC, MLC, and KNN. The evaluation indicators show that ResNet_18 convolutional neural network model in the OCNN performed the best, with a forest stand classification accuracy of up to 85.68%.

Funder

comprehensive investigation and zoning of ecological risks in national territorial space of China Geological Survey

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3