Microbial Metabolic Limitation and Soil Multifunctionality Changes across Subtropical Woodlands in Southern China

Author:

Qiao Hang12,Liu Caixia34ORCID,Deng Chenghua1,Sun Qi1,Deng Shaohong1,Duan Xun12,Chen Longsheng34,Chen Xiangbi1,Su Yirong1,Hu Yajun15

Affiliation:

1. Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha 410004, China

4. National Engineering Research Center for Oil Tea Camellia, Changsha 410004, China

5. College of Agronomy, Hunan Agricultural University, Changsha 410125, China

Abstract

Soil nutrient transformation and the microbial metabolism are primarily regulated by soil microorganisms, including fungi and bacteria, which exhibit distinct growth patterns, energy substrate utilization, and survival strategies. Despite their significance, our understanding of the key microorganisms governing the soil microbial metabolism and multifunctionality in subtropical woodlands remains limited. To address this knowledge gap, we conducted a large-scale investigation and assessment of the soil microbial metabolic limitation and soil multifunctionality in Camellia oleifera Abel and Pinus massoniana Lamb. woodlands in subtropical China. Our results reveal that the microbial phosphorus limitation was more severe in C. oleifera compared to P. massoniana woodlands. Nonetheless, the pattern of carbon metabolic limitation for microbes and soil multifunctionality was similar in both types of woodland. Specifically, the microbial carbon limitation was positively associated with both bacterial and fungal richness, while the microbial phosphorus limitation was significantly correlated with fungi including the richness and community structure in the P. massoniana woodland. By contrast, we did not observe significant correlations between microbial metabolic limitation indices and microbial parameters in C. oleifera woodlands. Regarding soil multifunctionality, the results reveal a strong positive correlation between the soil multifunctionality and fungal community in both P. massoniana and C. oleifera woodlands. Furthermore, our structural equation modeling revealed that the soil fungal community, rather than the bacterial community, had a significant effect on the microbial metabolic limitation and soil multifunctionality. Overall, our study provides profound insights into the relative importance of bacterial and fungal communities in shaping the soil microbial metabolic limitation and soil multifunctionality in subtropical woodlands. The findings of our study have important implications for the management and conservation of subtropical woodlands.

Funder

National Key Research Program

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3