Accurate Crack Detection Based on Distributed Deep Learning for IoT Environment

Author:

Kim YoungpilORCID,Yi ShinukORCID,Ahn HyunhoORCID,Hong Cheol-HoORCID

Abstract

Defects or cracks in roads, building walls, floors, and product surfaces can degrade the completeness of the product and become an impediment to quality control. Machine learning can be a solution for detecting defects effectively without human experts; however, the low-power computing device cannot afford that. In this paper, we suggest a crack detection system accelerated by edge computing. Our system consists of two: Rsef and Rsef-Edge. Rsef is a real-time segmentation method based on effective feature extraction that can perform crack image segmentation by optimizing conventional deep learning models. Then, we construct the edge-based system, named Rsef-Edge, to significantly decrease the inference time of Rsef, even in low-power IoT devices. As a result, we show both a fast inference time and good accuracy even in a low-powered computing environment.

Funder

Chung-Ang University

National Research Foundation of Korea (NRF) grant funded by the Korean Government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3