Category-Level Object Pose Estimation with Statistic Attention

Author:

Jiang Changhong1ORCID,Mu Xiaoqiao2,Zhang Bingbing3ORCID,Liang Chao4,Xie Mujun1ORCID

Affiliation:

1. School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun 130012, China

2. School of Mechanical and Electrical Engineering, Changchun University of Technology, Changchun 130012, China

3. School of Computer Science and Engineering, Dalian Minzu University, Dalian 116602, China

4. Collage of Computer Science and Engineering, Changchun University of Technology, Changchun 130012, China

Abstract

Six-dimensional object pose estimation is a fundamental problem in the field of computer vision. Recently, category-level object pose estimation methods based on 3D-GC have made significant breakthroughs due to advancements in 3D-GC. However, current methods often fail to capture long-range dependencies, which are crucial for modeling complex and occluded object shapes. Additionally, discerning detailed differences between different objects is essential. Some existing methods utilize self-attention mechanisms or Transformer encoder–decoder structures to address the lack of long-range dependencies, but they only focus on first-order information of features, failing to explore more complex information and neglecting detailed differences between objects. In this paper, we propose SAPENet, which follows the 3D-GC architecture but replaces the 3D-GC in the encoder part with HS-layer to extract features and incorporates statistical attention to compute higher-order statistical information. Additionally, three sub-modules are designed for pose regression, point cloud reconstruction, and bounding box voting. The pose regression module also integrates statistical attention to leverage higher-order statistical information for modeling geometric relationships and aiding regression. Experiments demonstrate that our method achieves outstanding performance, attaining an mAP of 49.5 on the 5°2 cm metric, which is 3.4 higher than the baseline model. Our method achieves state-of-the-art (SOTA) performance on the REAL275 dataset.

Funder

Science and Technology Development Program Project of Jilin Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3