An Optimal Multi-Channel Trilateration Localization Algorithm by Radio-Multipath Multi-Objective Evolution in RSS-Ranging-Based Wireless Sensor Networks

Author:

Fang Xuming,Chen Lijun

Abstract

The Global Positioning System (GPS) is unable to provide precise localization services indoors, which has led to wireless sensor network (WSN) localization technology becoming a hot research issue in the field of indoor location. At present, the ranging technology of wireless sensor networks based on received signal strength has been extensively used in indoor positioning. However, wireless signals have serious multipath effects in indoor environments. In order to reduce the adverse influence of multipath effects on distance estimation between nodes, a multi-channel ranging localization algorithm based on signal diversity is herein proposed. In real indoor environments, the parameters used for multi-channel localization algorithms are generally unknown or time-varying. In order to increase the positioning accuracy of the multi-channel location algorithm in a multipath environment, we propose an optimal multi-channel trilateration positioning algorithm (OMCT) by establishing a novel multi-objective evolutionary model. The presented algorithm utilizes a three-edge constraint to prevent the traditional multi-channel localization algorithm falling into local optima. The results of a large number of practical experiments and numerical simulations show that no matter how the channel number and multipath number change, the positioning error of our presented algorithm is always smaller compared with that of the state-of-the-art algorithm.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3