Relative Permittivity Measurement of Microliter Volume Liquid Samples through Microwave Filters

Author:

Yasin Azhar1ORCID,Gogosh Nayab1,Sohail Syed Irfan2,Abbas Syed Muzahir3ORCID,Shafique Muhammad Farhan4ORCID,Mahmoud Abdelhady5ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad 45550, Pakistan

2. Department of Computing and Technology, IQRA University Islamabad Campus, Islamabad 44000, Pakistan

3. Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney, NSW 2109, Australia

4. Center for Advanced Studies in Telecommunication, COMSATS University Islamabad, Islamabad 45550, Pakistan

5. Benha Faculty of Engineering, Benha University, Benha 13512, Egypt

Abstract

This paper proposes a concept of dielectric characterization of low-volume liquid samples using the coupling coefficient of filters. The concept is validated through a two-pole substrate integrated waveguide filter in which the liquid under test is mounted on the coupling section between the two resonators. Unlike the conventional resonator perturbation method reported many times in the literature, this technique uses the coupling coefficient for sensing. The liquid sample is collected in a capillary tube and carefully positioned on the coupling section of the filter; the coupling coefficient of the two resonators varies compared to the relative permittivity of the sample; thus, an empirical model is established. The proposed sensor has been tested to compute the permittivity of different alcohols. Binary solutions of ethanol and water have also been characterized to calculate the volume ratio and relative permittivity as a proof-of-concept. The obtained results show that the proposed sensing technique is capable of characterizing a low quantity of liquids (≈44 µL) with good accuracy, and a worst case measured error of only 6.8% is noted. The ease of integration with other circuitry, low cost, reusability with no deterioration, and adaptability of the proposed sensor makes it a suitable choice for the chemical as well as for the pharmaceutical industry.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3