TB-BCG: Topic-Based BART Counterfeit Generator for Fake News Detection

Author:

Karnyoto Andrea StevensORCID,Sun ChengjieORCID,Liu Bingquan,Wang Xiaolong

Abstract

Fake news has been spreading intentionally and misleading society to believe unconfirmed information; this phenomenon makes it challenging to identify fake news based on shared content. Fake news circulation is not only a current issue, but it has been disseminated for centuries. Dealing with fake news is a challenging task because it spreads massively. Therefore, automatic fake news detection is urgently needed. We introduced TB-BCG, Topic-Based BART Counterfeit Generator, to increase detection accuracy using deep learning. This approach plays an essential role in selecting impacted data rows and adding more training data. Our research implemented Latent Dirichlet Allocation (Topic-based), Bidirectional and Auto-Regressive Transformers (BART), and Cosine Document Similarity as the main tools involved in Constraint @ AAAI2021-COVID19 Fake News Detection dataset shared task. This paper sets forth this simple yet powerful idea by selecting a dataset based on topic and sorting based on distinctive data, generating counterfeit training data using BART, and comparing counterfeit-generated text toward source text using cosine similarity. If the comparison value between counterfeit-generated text and source text is more than 95%, then add that counterfeit-generated text into the dataset. In order to prove the resistance of precision and the robustness in various numbers of data training, we used 30%, 50%, 80%, and 100% from the total dataset and trained it using simple Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN). Compared to baseline, our method improved the testing performance for both LSTM and CNN, and yields are only slightly different.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference43 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transformer technology in molecular science;WIREs Computational Molecular Science;2024-07

2. Determinants of multimodal fake review generation in China’s E-commerce platforms;Scientific Reports;2024-04-12

3. Detecting fake news for COVID-19 using deep learning: a review;Multimedia Tools and Applications;2024-02-16

4. Using Attention-Based Models to Automate Fake News Detection *;2023 Tenth International Conference on Social Networks Analysis, Management and Security (SNAMS);2023-11-21

5. A Systematic Literature Review and Meta-Analysis of Studies on Online Fake News Detection;Information;2022-11-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3