Fuzzy Algebraic Modeling of Spatiotemporal Timeseries’ Paradoxes in Cosmic Scale Kinematics

Author:

Iliadis LazarosORCID

Abstract

This paper introduces the prototype of a generic fuzzy algebraic framework, that aims to serve as a holistic modeling approach of kinematics. Moreover, it detects paradoxes and uncertainties when the involved features of the timeseries have “unconventional” values. All well accepted models are perfectly capturing and clearly describing the spatiotemporal characteristics of a moving object’s (MO) status, when its actual distance from the observer is conventional, i.e., “insignificant compared to the magnitude of light years”. Let us consider the concept that emerges by the following Boolean expression1 (BE1): “Velocity is significant compared to the speed of light (SIV_cSL) AND distance between observer and moving body is significant compared to light years (SID_cLY)”. The only restriction in the above BE1 Boolean expression is that velocity would always be less than C. So far, BE1 is not considered to be true in the models that are employed to build our scientific physics studies. This modeling effort performs mining of kinematics phenomena for which BE1 is true. This approach is quite innovative, in the sense that it reveals paradoxes and uncertainties, and it reaches the following conclusions: When a particle is moving inside hypersurfaces characterized by any type of BE1′s negation, our existing kinematics’ models can survive. In the opposite case, we are gradually led to paradoxes and uncertainties. The gradual and smooth transition from the one state to the other as well as the importance of the aforementioned limitations, can be inferred-modeled by employing fuzzy logic.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference12 articles.

1. The Forgotten Legacy of Gödel and Einstein a World without Time;Yourgrau,2005

2. University Physics—With Modern Physics;Young,2018

3. Dynamics and Relativity. Manchester Physics Series;Forshaw,2009

4. Spacetime Physics;Wheeler,1973

5. Lorentz Transformation, Poincaré Vectors and Poincaré Sphere in Various Branches of Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3