Abstract
This paper introduces the prototype of a generic fuzzy algebraic framework, that aims to serve as a holistic modeling approach of kinematics. Moreover, it detects paradoxes and uncertainties when the involved features of the timeseries have “unconventional” values. All well accepted models are perfectly capturing and clearly describing the spatiotemporal characteristics of a moving object’s (MO) status, when its actual distance from the observer is conventional, i.e., “insignificant compared to the magnitude of light years”. Let us consider the concept that emerges by the following Boolean expression1 (BE1): “Velocity is significant compared to the speed of light (SIV_cSL) AND distance between observer and moving body is significant compared to light years (SID_cLY)”. The only restriction in the above BE1 Boolean expression is that velocity would always be less than C. So far, BE1 is not considered to be true in the models that are employed to build our scientific physics studies. This modeling effort performs mining of kinematics phenomena for which BE1 is true. This approach is quite innovative, in the sense that it reveals paradoxes and uncertainties, and it reaches the following conclusions: When a particle is moving inside hypersurfaces characterized by any type of BE1′s negation, our existing kinematics’ models can survive. In the opposite case, we are gradually led to paradoxes and uncertainties. The gradual and smooth transition from the one state to the other as well as the importance of the aforementioned limitations, can be inferred-modeled by employing fuzzy logic.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference12 articles.
1. The Forgotten Legacy of Gödel and Einstein a World without Time;Yourgrau,2005
2. University Physics—With Modern Physics;Young,2018
3. Dynamics and Relativity. Manchester Physics Series;Forshaw,2009
4. Spacetime Physics;Wheeler,1973
5. Lorentz Transformation, Poincaré Vectors and Poincaré Sphere in Various Branches of Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献