Abstract
The direct-sequence spread-spectrum (DSSS) technique has been widely used in wireless secure communications. In this technique, the baseband signal is spread over a wider bandwidth using pseudo-random sequences to avoid interference or interception. In this paper, the authors propose methods to adaptively detect the DSSS signals based on knowledge-enhanced compressive measurements and artificial neural networks. Compared with the conventional non-compressive detection system, the compressive detection framework can achieve a reasonable balance between detection performance and sampling hardware cost. In contrast to the existing compressive sampling techniques, the proposed methods are shown to enable adaptive measurement kernel design with high efficiency. Through the theoretical analysis and the simulation results, the proposed adaptive compressive detection methods are also demonstrated to provide significantly enhanced detection performance efficiently, compared to their counterpart with the conventional random measurement kernels.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Tianjin City
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献