Modeling of Heat Transfer Coefficient in Solar Greenhouse Type Drying Systems

Author:

Çerçi Kamil Neyfel,Daş MehmetORCID

Abstract

As a sustainable energy source, solar energy is used in many applications. A greenhouse type dryer, which is a food drying system, directly benefits from solar energy. Convective heat transfer coefficient (hc) is an important parameter in food drying systems, in terms of system design and performance. Many parameters and equations are used to determine hc. However, as it is difficult to manually process and analyze large amounts of data and different formulations, machine learning algorithms are preferred. In this study, natural and forced convective solar greenhouse type dryers were designed. In a solar greenhouse type dryer, grape is dried in natural (GDNC) and forced convection (GDFC). For convective heat transfer coefficient (hc), predictive models were created using a multilayer perceptron (MLP)—which has many uses in drying applications, as mentioned in the literature—and decision tree (DT), which has not been used before in food drying applications. The machine learning algorithms and results of the estimated models are compared in this study. Error analyses were performed to determine the accuracy rates of the obtained models. As a result, the hc value of the dried grape product in a natural convective solar greenhouse type dryer was 11.3% higher than that of the forced type. The DT algorithm was found to be a more successful model than the MLP algorithm in estimating hc values in HDFC according to Root Mean Square Error. (RMSE = 0.0903). On the contrary, the MLP algorithm was more successful than the DT algorithm in estimating hc values in GDNC (RMSE = 0.0815).

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3