A Modelling-Based Framework for Carbon Emissions Calculation in Additive Manufacturing: A Stereolithography Case Study

Author:

Panagiotopoulou Vasiliki C.1ORCID,Paraskevopoulou Aikaterini1ORCID,Stavropoulos Panagiotis1ORCID

Affiliation:

1. Laboratory for Manufacturing Systems & Automation, Department of Mechanical Engineering and Aeronautics, University of Patras, Rion, 26504 Patras, Greece

Abstract

Manufacturing is one of the most heavily contributing sectors to global warming via its high carbon emissions. Initiatives such as the Green Deal and Sustainable Goals by the United Nations are supporting the reduction of carbon emissions in the manufacturing sector, which can be completed by making manufacturing processes more sustainable and with less carbon footprint. This also applies to novel manufacturing processes such as additive manufacturing (AM). In this work, a previously developed framework for carbon footprint calculation was tailor-made and applied to a specific stereolithography (SLA) case. The different steps of the SLA were categorised per process, machine tool and system level, and the respective carbon emissions were calculated, either theoretically or via a life cycle assessment software. The carbon emissions at the process level were significant when compared to the total carbon emissions, and the carbon emissions of the isopropanol (IPA) bath accounted for more than 50% of the total carbon footprint of the SLA. These results demonstrate that the AM process may not be as environmentally friendly as it was assumed to be, especially if post-processing and finishing steps are carbon-intensive, because of the liquids used for the baths.

Funder

the Horizon Europe research and innovation program

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3