Innovative Method for Determining Young’s Modulus of Elasticity in Products with Irregular Shapes: Application on Peanuts

Author:

Nader Joelle1,Assaf Jean Claude2ORCID,Debs Espérance3ORCID,Louka Nicolas4ORCID

Affiliation:

1. Department of Information Technology and Operations Management, Adnan Kassar School of Business, Lebanese American University, P.O. Box 36, Byblos 48328, Lebanon

2. Department of Chemical Engineering, Faculty of Engineering, University of Balamand, P.O. Box 100, Tripoli 1300, Lebanon

3. Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O. Box 100, Tripoli 1300, Lebanon

4. Centre d’Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Riad El Solh, P.O. Box 17-5208, Beirut 1104 2020, Lebanon

Abstract

Accurate determination of Young’s modulus of elasticity in irregularly shaped products is quite challenging. This study introduces a novel method that can measure the elasticity in non-uniform products, such as peanuts. Variations of the contact surface between the peanut and a crosshead were precisely calculated using this technique based on kernels blueprints remaining on graph paper after compression. The elastic modulus was assessed by stress-strain tests using Hooke’s theory. The significance of the effects of water content and loading rate on the elastic modulus of peanuts was studied using the Response Surface Methodology (RSM). Results showed that the elasticity was mostly influenced by the kernel’s water content. It decreased from 3.75 to 0.10 MPa when the initial water content increased from 7 to 18% (dry basis). Water content had a significant effect on Young’s modulus (p < 0.05) at 95% confidence level with a correlation coefficient (R2) of 95.52%. Conversely, the effect of the loading rate on this response was minimal. The proposed approach takes into consideration the irregularities in shape, size, and surface characteristics of products in evaluating Young’s modulus. It offers valuable insights for further investigations in optimizing quality assessment in the food industry.

Funder

El-Kazzi

Council for Scientific Research of Saint-Joseph University of Beirut

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3