The Recovery of TiO2 from Ilmenite Ore by Ammonium Sulfate Roasting–Leaching Process

Author:

Abdelgalil Mahmoud S.12ORCID,El-Barawy K.2,Ge Yang1,Xia Longgong1ORCID

Affiliation:

1. Complex Material Metallurgy and Slag Chemistry Research Group, School of Metallurgy and Environment, Central South University, Changsha 410083, China

2. Pyrometallurgical Processing of Ores Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan 11722, Egypt

Abstract

TiO2 production is a key part of Ti metallurgy and Ti recycling, and the process itself has turned out to be energy-consuming and material-consuming. New technologies are needed to utilize complex Ti ores, such as ilmenite, and reduce the carbon footprint of TiO2 extraction. Ammonium sulfate roasting has been revealed as an efficient way to carry out phase transformations of complex minerals. A low-temperature sulfation roasting approach was studied to chemically breaking down the crystal structure of ilmenite and generate metal soluble sulfates simultaneously. These roasted products were introduced to water leaching, then the residue of the water leaching was leached by diluted HCl acid, and the TiO2 product was enriched in the leaching residue. The effects of roasting temperature, roasting time, ilmenite-to-ammonium sulfate mass ratio, ilmenite particle size, and second-stage roasting on iron removal and titanium loss leaching efficiency were systematically studied. The results show that the optimum roasting conditions were a roasting temperature of 500 °C, a roasting time of 210 min, an ilmenite-to-(NH4)2SO4 mass ratio of 1:7, and an ilmenite particle size of below 43 µm. Under optimized conditions, the TiO2 grade in the obtained synthetic rutile reached 75.83 wt.%. Furthermore, the phase transformation and reaction mechanism during roasting are discussed and interpreted.

Funder

Science and Technology Innovation Program of Hunan Province

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3