Structural Design and Preparation Process Research of Stacked MEMS Gas Sensors for Volatile Organic Compound Gases

Author:

Wu Guizhou1,Wu Junfeng1,Dong Juan2,Zhang Xinyu3

Affiliation:

1. School of Measurement and Communication Engineering, Harbin University of Science and Technology, Harbin 150080, China

2. School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

3. He Harbin Power Plant Valve Company Limited, Harbin 150000, China

Abstract

To design gas sensors with fast response speed and high sensitivity for the detection of volatile organic compounds, a stacked MEMS sensor was designed in this study. It utilizes porphyrin-sensitive materials and carbon nanotubes to form composite materials, improve the thermal stability of sensitive materials, and conduct sensor gas sensitivity testing. The results show that the design of the thermal insulation structure makes the sensor obtain lower power consumption and more uniform temperature distribution, and the maximum deformation variable is 3.7 × 10−2 μM. Doping carbon nanotubes in porphyrin-sensitive materials can effectively improve their thermal stability, and the sensor is in a safe state at temperatures below 358 °C. The sensor with higher response recovery characteristics at a low concentration of 80 ppm aniline has better response recovery characteristics, with a response time of 33 s and a recovery time of 23 s, respectively; its response recovery characteristics to 1% high concentration ethanol gas are good, with a recovery time of 13 s and a sensitivity of 1.05. In the analysis of the sensor image characteristics, when the Euclidean distance threshold is set to five, four gases such as aniline and formaldehyde can be classified. The sensor designed in this study can effectively detect four gases, including aniline and formaldehyde.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3