Screening of Microbial Strains Used to Ferment Dendrobium officinale to Produce Polysaccharides, and Investigation of These Polysaccharides’ Skin Care Effects

Author:

Tang Xin12,Wang Bulei12,Mao Bingyong12,Zhao Jianxin12,Liu Guangrong3,Yang Kaiye3,Cui Shumao12

Affiliation:

1. State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China

2. School of Food Science and Technology, Jiangnan University, Wuxi 214122, China

3. Infinitus (China) Co., Ltd., Guangzhou 510423, China

Abstract

The microbial fermentation of plants is a promising approach for enhancing the yield of polysaccharides with increased activity. In this study, ten microbial strains, Lactiplantibacillus plantarum CCFM8661, Limosilactobacillus reuteri CCFM8631, Lactobacillus helveticus M10, Lacticaseibacillus rhamnosus CCFM237, Lactilactobacillus sakei GD17-9, Lacticaseibacillus casei CCFM1073, Bacillus subtilis CCFM1162, Bacteroides cellulosilyticus FTJSI-E-2, Bacteroides stercoris FNMHLBEIK-4, and Saccharomyces cerevisiae HN7-A5, were used to ferment Dendrobium officinale. The skin care activity of the resulting polysaccharides (F-DOP) was evaluated in cultured HaCaT and RAW 264.7 cells, and a mouse model. The results indicated that D. officinale medium promoted strain proliferation, and fermentation significantly enhanced polysaccharide yield (up to 1.42 g/L) compared to that without fermentation (0.76 g/L). Moreover, F-DOPs, especially after CCFM8631 fermentation, exhibited an excellent ability to attenuate sodium dodecyl sulfate-induced HaCaT cell injury (from 69.04 to 94.86%) and decrease nitric oxide secretion (from 42.86 to 22.56 μM) in lipopolysaccharide-stimulated RAW 264.7 cells. In vivo, CCFM8631-FDOP reduced the transdermal water loss rate, skin epidermal thickness, and interleukin 6, and enhanced the expression of filaggrin, improving 2,4-dinitrofluorobenzene-induced skin damage. Therefore, considering viable cell counts, polysaccharide yields, and skin care efficacy in vitro and in vivo, CCFM8631 is the most suitable strain to enhance the skin care activity of DOPs and possesses promising potential for applications in the cosmetics industry.

Funder

National Natural Science Foundation of China

Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3