Homogeneous Field Measurement and Simulation Study of Injector Nozzle Internal Flow and Near-Field Spray

Author:

Chen Ping1,Xu Rongwu1,Liu Zhenming1ORCID,Liu Jingbin1ORCID,Zhang Xusheng2

Affiliation:

1. College of Power Engineering, Naval University of Engineering, Wuhan 430033, China

2. The Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China

Abstract

The homogeneous field measurement of internal flow and spray of internal combustion engine injector nozzles under high pressure has always been one of the difficulties in experimental research. In this paper, an actual-size aluminum alloy nozzle is designed, and the simultaneous measurement of internal flow and near-field spray is successfully realized with the help of synchrotron radiation X-ray phase contrast imaging technology under an injection pressure of 30~90 MPa. For a 0.25 mm aperture nozzle, different radii of the inlet corner can induce different cavitation layer thicknesses, and the measured flow section shrinkage ratio is 0.70. The flow characteristics in the nozzle are entirely connected to the jet characteristics, indicating a tight correlation between internal flow and jet morphology. Finally, the internal cavitation of the nozzle was studied by the CFD simulation, and the simulation results are in good agreement with the experiment.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3