A Hybrid Cluster Variational Autoencoder Model for Monitoring the Multimode Blast Furnace System

Author:

Chen Chenyu1,Cai Jinhui1ORCID

Affiliation:

1. College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China

Abstract

Efficient monitoring of the blast furnace system is crucial for maintaining high production efficiency and ensuring product quality. This article introduces a hybrid cluster variational autoencoder model for monitoring the blast furnace ironmaking process which exhibits multimode behaviors. In contrast to traditional approaches, this method utilizes neural networks to learn data features and effectively handles the diverse feature types observed in different production modes. Through the utilization of a clustering process within the hidden layer of the variational autoencoder, the proposed technique facilitates efficient fault detection in the context of multimodal blast furnace data. Based on the variational autoencoder model, this study further establishes a unified monitoring index and defines a method for computing the control limits. The application of the model to real blast furnace data reveals its proficiency in accurately identifying faults across diverse modes; compared with the probabilistic principal component analysis based on the local nearest neighbor standardization method and the recursive probabilistic principal component analysis, the model shows a reduction in false positives by up to 10.3% and a substantial reduction of 19.2% in the missed detection rate. This method achieves a remarkable false detection rate of only 0.2% and 0 instances of missed detection.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3