Attribution Analysis on Areal Change of Main Wetland and Its Influence on Runoff in the Naolihe River Basin

Author:

Ding Hong1,Zeng Qinghui1,Yang Qin1,Liu Huan1,Hu Peng1,Zhu Haifeng2,Wang Yinan3

Affiliation:

1. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

2. Ministry of Agricultural Development, Beidahuang Group Co., Ltd., Harbin 150036, China

3. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

Abstract

Wetlands have powerful runoff regulation functions, which can effectively store and retain surface runoff. The runoff regulation function of wetlands is affected by wetland areas, which affect the capacity of flood control. To explore the law of the area change of the main wetlands of the Naolihe River Basin (MWNRB), the visual interpretation method was used to extract wetlands. To identify the reasons for area changes in the MWNRB, the maximum likelihood method, minimum distance method, and neural network method were used to classify land use types from remote sensing images; the M-K variation point test and Theil-Sen trend analysis were used to test the variation point and calculate the trend of precipitation and temperature series. To clarify the influence of wetland areas on runoff, the Gini coefficient and SRI of runoff were used to calculate runoff temporal inhomogeneity. The results showed that the area of the MWNRB obviously decreased, with 74.5 × 106 m2/year from 1993 to 2008, and increased slowly from 2008 to 2015, with 27.7 × 106 m2/year. From 1993 to 2008, 50.74% and 38.87% of wetlands were transformed into paddy fields and dry fields, respectively. From 2008 to 2015, 61.69% and 7.76% of wetlands were transformed from paddy fields and dry fields, respectively. The temperature of the MWNRB increased slowly by 0.04 °C/year from 1993 to 2008 and increased obviously by 0.16 °C/year from 2008 to 2015. The precipitation decreased by 5.6–8.1 mm/year and increased by 16.6–41.2 mm/year in 1993–2008 and 2008–2015, respectively. Compared with precipitation and temperature, land use change caused by human activities is the main cause of wetland area change. The area change of the MWNRB has a certain influence on the runoff regulation and storage capacity. The Gini coefficient and SRI index increased from 0.002/year (0.008) to 0.023/year from 1993 to 2008 and decreased from 0.046/year (0.045) to 0.161/year from 2008 to 2015, respectively.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Basic Scientific Research Project of IWHR

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference48 articles.

1. A review on the study of wetland assessment in China;Yang;Chin. J. Ecol.,2004

2. Progress and prospect of observation on wetland ecosystem;Jiang;Prog. Geogr.,2005

3. The empirics of wetland valuation: A comprehensive summary and a meta-analysis of the literature;Brander;Environ. Resour. Econ.,2006

4. Research on wetland ecosystem health;Lin;World For. Res.,2009

5. Wetlands and sustainability;Smardon;Water,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3