Abstract
Honeybee pathogens have an important role in honeybee colony mortality and colony losses; most of them are widely spread and necessitate worldwide solutions to contrast honeybee’s decline. Possible accepted solutions to cope with the spread of honeybee’s pathogens are focused on the study of experimental protocols to enhance the insect’s immune defenses. Honeybee’s artificial diet capable to stimulate the immune system is a promising field of investigation as ascertained by the introduction of 1,3-1,6 β-glucans as a dietary supplement. In this work, by collecting faecal samples of honeybees exposed to different dietary conditions of 1,3-1,6 β-glucans (0.5% and 2% w/w), it has been possible to investigate the Deformed wing virus (DWV) viral load kinetic without harming the insects. Virological data obtained by a one-step TaqMan RT-PCR highlighted the ability of 1,3-1,6 β-glucans to reduce the viral load at the 24th day of rearing. The results indicated that the diet supplemented with 1,3-1,6 β-glucans was associated with a dose-dependent activation of phenoloxidase. The control group showed a higher survival rate than the experimental groups. This research confirmed 1,3-1,6 β-glucans as molecules able to modulate honeybees’ defense pathways, and this is the first report in which the kinetic of DWV infection in honeybee faeces has been monitored by a RT-qPCR.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献