Compact Open-Path Sensor for Fast Measurements of CO2 and H2O using Scanned-Wavelength Modulation Spectroscopy with 1f-Phase Method

Author:

Li XiangORCID,Yuan Feng,Hu Mai,Chen Bin,He Yabai,Yang Chenguang,Shi Lifang,Kan Ruifeng

Abstract

We report here the development of a compact, open-path CO2 and H2O sensor based on the newly introduced scanned-wavelength modulation spectroscopy with the first harmonic phase angle (scanned-WMS-θ1f) method for high-sensitivity, high temporal resolution, ground-based measurements. The considerable advantage of the sensor, compared with existing commercial ones, lies in its fast response of 500 Hz that makes this instrument ideal for resolving details of high-frequency turbulent motion in exceptionally dynamic coastal regions. The good agreement with a commercial nondispersive infrared analyzer supports the utility and accuracy of the sensor. Allan variance analysis shows that the concentration measurement sensitivities can reach 62 ppb CO2 in 0.06 s and 0.89 ppm H2O vapor in 0.26 s averaging time. Autonomous field operation for 15-day continuous measurements of greenhouse gases (CO2/H2O) was performed on a shore-based monitoring tower in Daya Bay, demonstrating the sensor’s long-term performance. The capability for high-quality fast turbulent atmospheric gas observations allow the potential for better characterization of oceanographic processes.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference36 articles.

1. A feasible Global Carbon Cycle Observing System: a plan to decipher today's carbon cycle based on observations

2. Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects

3. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2014

4. The importance of continental margins in the global carbon cycle

5. Climate Change 2007: Synthesis Report,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3