Comparing Hot and Cold Loading in an Integrated Biomass Recovery Operation

Author:

Kizha Anil RajORCID,Han Han-SupORCID,Anderson Nathaniel,Koirala AnilORCID,T. Louis LibinORCID

Abstract

The balance of production activities at the landing is pivotal to the success of any forest harvesting operation and has a direct impact on the cost and efficiency of the enterprise. The primary objective of this study was to understand the operational characteristics of the loader in a hot operation (handling both sawlog and biomass components concurrently) and cold operation (handling biomass and sawlogs separately) for harvesting sawlogs and biomass. Systematic work sampling techniques were employed to obtain “snapshots” of the loader activities for a cable logging operation, including the interaction of the loader with other operational phases and delay time for both hot and cold configurations. The results show that for hot loading at the landing, the yarder was the most utilized machine (85%), and was the bottleneck of the operation, followed by the loader (70%). In the hot loading configuration, 39% of operational delay during truck loading was caused by the loader and was predominantly due to movement of the loader within or between the landings. This was followed by the yarder (19%, due to rigging activities) and the chaser (15%, to maintain the crews’ safety). In the cold loading configuration, delays due to the unavailability of roll-off bins constituted up to 77% of the operational delay. This suggests that the number of bins and trucks hauling biomass has a crucial role in the overall efficiency of the biomass harvesting system, and should be well balanced with loading capacity. Additionally, the choice of hot or cold biomass loading operations is highly dependent on the site and operating conditions.

Funder

U.S. Department of Agriculture

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3