Impact of Urban Re-Densification on Indoor Lighting Demand and Energy Poverty on the Equator, in the City of Quito

Author:

Montes-Villalva EstefaníaORCID,Pereira-Ruchansky LucíaORCID,Piderit-Moreno BeatrizORCID,Pérez-Fargallo AlexisORCID

Abstract

Human wellbeing and their quality of life is linked to daylight. However, this is being hindered by the rapid growth of cities, promoted by regulatory frameworks and the interests of property developers that seek high-rise densification and re-densification of certain urban areas, jeopardizing access to daylight. This article proposes a methodology to evaluate the impact of urban re-densification on indoor lighting demand in high-rise buildings in Ecuador and its relationship with energy poverty. It analyzes the urban and building features of Quito, considering the location conditions of buildings and using simulation tools to explore solar irradiance reductions on the façade. It also analyzes increases in lighting demand, while determining the extreme conditions, considering an increase in energy consumption, the average salary, and the Ten Percent Rule. The results show that daylight obstructions and umbral cones generated when facing a high-rise re-densification scenario in the city reduce daylight by between 40% and 80%, generating increases of between 2% and 498% in lighting demand when compared to an unobstructed scenario. These re-densification scenarios may cause significant social problems associated with energy poverty. In conclusion, according to the Ten Percent Rule, buildings should be limited to four stories for streets under 10 m wide, between four and six stories for those between 10 and 14 m, and between six and nine stories for streets that are between 14 and 18 m wide. This research seeks to help public policy developers in making future decisions about risks that are currently not considered in urban planning and that may contradict sustainable development goals.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3