A Biophilic Design Approach for Improved Energy Performance in Retrofitting Residential Projects

Author:

Nitu Maliha Afroz,Gocer OzgurORCID,Wijesooriya Niranjika,Vijapur DikshaORCID,Candido ChristhinaORCID

Abstract

The existing building stock is recognised as a major contributor to total energy consumption and related carbon emissions around the globe. There is increased attention on the retrofit of existing building stock, especially residential buildings, as a way of curbing energy consumption and carbon emissions. Within this context, human nature connectedness (HNC) has the potential of further amplifying the benefits of sustainable buildings both from an energy conservation practice and tangible improvements to users’ satisfaction, health, and wellbeing. This study attempts to show a case study of the potential of using HNC through the adoption of biophilic design principles to improve a residential building performance. A terrace house located in Sydney, NSW, was used as a case study and proposed retrofit scenarios were simulated with DesignBuilder® and Rhinoceros/Grasshopper with a view of improved daylighting, thermal comfort, and energy consumption. The building performance is improved in terms of daylighting, thermal comfort, and reduced energy consumption, additionally enhancing HNC.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3