Combined Electrocoagulation and Physicochemical Treatment of Cork Boiling Wastewater

Author:

Vicente CarolinaORCID,Silva João R.ORCID,Santos Andreia D.ORCID,Quinta-Ferreira Rosa M.,Castro Luis M.ORCID

Abstract

Cork boiling wastewater (CBW) is a highly polluted and difficult to treat effluent resultant from the cork manufacturing industry. This study aims to evaluate a new, reliable, efficient, and sustainable process to treat this effluent. This paper tested electrocoagulation as a pre- and post-treatment to improve the already existing physicochemical treatment in a cork production facility in Portugal. In the physicochemical procedures (PC), the addition of different volumes of coagulant (ferric chloride (III) 40% w/w), neutralizer (sodium hydroxide, 32% w/w), and flocculant (polyacrylamide, 0.2 g/L) were evaluated. Electrocoagulation (EC) was performed in a bench-scale reactor, using aluminum and stainless-steel electrodes. For EC, different initial pH, current density, and current tension values were tested. When electrocoagulation was used as a post-treatment, better performances were achieved. However, treatment costs were increased significantly. Coagulation/flocculation offers a viable and cheap treatment, achieving removal efficiencies of 88.2%, 81.0%, 76.9%, and 94.2% for total chemical oxygen demand (tCOD), total carbon (TC), total nitrogen (TN), and soluble chemical oxygen demand (sCOD), respectively. With a PC-EC combination, it is possible to achieve removal efficiencies of 92.4%, 88.0%, 91.4%, and 91.4% for tCOD, TC, TN, and sCOD, respectively. The increased TN removal efficiency can translate into great benefits for certain discharge conditions and should be taken into consideration for improving the sustainability of cork industry. On the other hand, when EC is used as a pre-treatment, there are no benefits either in terms of treatment performance or operating costs.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3