Effects of Charge Traps on Hysteresis in Organic Field-Effect Transistors and Their Charge Trap Cause Analysis through Causal Inference Techniques

Author:

Kim Somi1,Yoo Hochen1ORCID,Choi Jaeyoung2ORCID

Affiliation:

1. Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Republic of Korea

2. School of Computing, Gachon University, Seongnam-si 13120, Republic of Korea

Abstract

Hysteresis in organic field-effect transistors is attributed to the well-known bias stress effects. This is a phenomenon in which the measured drain-source current varies when sweeping the gate voltage from on to off or from off to on. Hysteresis is caused by various factors, and one of the most common is charge trapping. A charge trap is a defect that occurs in an interface state or part of a semiconductor, and it refers to an electronic state that appears distributed in the semiconductor’s energy band gap. Extensive research has been conducted recently on obtaining a better understanding of charge traps for hysteresis. However, it is still difficult to accurately measure or characterize them, and their effects on the hysteresis of organic transistors remain largely unknown. In this study, we conduct a literature survey on the hysteresis caused by charge traps from various perspectives. We first analyze the driving principle of organic transistors and introduce various types of hysteresis. Subsequently, we analyze charge traps and determine their influence on hysteresis. In particular, we analyze various estimation models for the traps and the dynamics of the hysteresis generated through these traps. Lastly, we conclude this study by explaining the causal inference approach, which is a machine learning technique typically used for current data analysis, and its implementation for the quantitative analysis of the causal relationship between the hysteresis and the traps.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference107 articles.

1. Organic semiconductors;Chen;Encycl. Mod. Opt.,2018

2. Active discovery of organic semiconductors;Kunkel;Nat. Commun.,2021

3. Recent progress in emerging organic semiconductors;Zhang;Adv. Mater.,2022

4. Tutorial: Organic field-effect transistors: Materials, structure and operation;Lamport;J. Appl. Phys.,2018

5. Organic field-effect transistors;Opto Electron. Rev.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3