Machine Learning Methods and Synthetic Data Generation to Predict Large Wildfires

Author:

Pérez-Porras Fernando-Juan,Triviño-Tarradas PaulaORCID,Cima-Rodríguez Carmen,Meroño-de-Larriva Jose-EmilioORCID,García-Ferrer AlfonsoORCID,Mesas-Carrascosa Francisco-JavierORCID

Abstract

Wildfires are becoming more frequent in different parts of the globe, and the ability to predict when and where they will occur is a complex process. Identifying wildfire events with high probability of becoming a large wildfire is an important task for supporting initial attack planning. Different methods, including those that are physics-based, statistical, and based on machine learning (ML) are used in wildfire analysis. Among the whole, those based on machine learning are relatively novel. In addition, because the number of wildfires is much greater than the number of large wildfires, the dataset to be used in a ML model is imbalanced, resulting in overfitting or underfitting the results. In this manuscript, we propose to generate synthetic data from variables of interest together with ML models for the prediction of large wildfires. Specifically, five synthetic data generation methods have been evaluated, and their results are analyzed with four ML methods. The results yield an improvement in the prediction power when synthetic data are used, offering a new method to be taken into account in Decision Support Systems (DSS) when managing wildfires.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3