The Protective Role of Vitamin E against Oxidative Stress and Immunosuppression Induced by Non-Esterified Fatty Acids in Bovine Peripheral Blood Leukocytes

Author:

Li Cheng-Yan12ORCID,Lin Wei-Chen12,Moonmanee Tossapol34ORCID,Chan Jacky Peng-Wen5,Wang Chien-Kai12ORCID

Affiliation:

1. Department of Animal Science, National Chung Hsing University, Taichung 402202, Taiwan

2. The iEGG and Animal Biotechnology Center, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan

3. Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand

4. Functional Feed Innovation Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand

5. Department of Veterinary Medicine, National Chung Hsing University, Taichung 402202, Taiwan

Abstract

High levels of non-esterified fatty acids (NEFAs) during the transition period lead to increased oxidative stress and immunosuppression in cows. Feeding them a vitamin-E-supplemented diet reduces reactive oxygen species (ROS) levels in the blood and diminishes immunosuppression in the transition period. However, whether the restoration of immune cell function occurs through the direct action of vitamin E in cells is still a topic that requires further discussion. Therefore, in this experiment, we aimed to investigate the effect of NEFAs on peripheral blood leukocytes (PBLs) and whether vitamin E mitigates the impact of NEFAs. We employed three groups: (1) blank, (2) NEFA only, and (3) pre-culturing with vitamin E before NEFA treatment (VENEFA). In peripheral blood mononuclear cells (PBMCs), there were no differences in vitamin E content among the three groups. However, in the vitamin E pre-treatment group, the vitamin E levels of polymorphonuclear neutrophils (PMNs) were significantly higher than those in the other two groups. NEFA levels increased malondialdehyde (MDA) levels in PBMCs, but pre-treatment with vitamin E reduced accumulation of MDA levels. Regarding the expression of proinflammatory genes, NEFAs increased the expression of interleukin-1β in PBMCs and colony-stimulating factor 2 in PMNs. Vitamin E pre-treatment restored the increase in interleukin-1β levels caused by NEFAs in PBMCs. None of the groups affected the phagocytosis of PMNs. Few studies have confirmed that NEFAs cause oxidative stress in bovine PBLs. In summary, this study found that NEFAs induce oxidative stress in PBLs and alter the expression of inflammation-related genes; meanwhile, vitamin E can reduce some of the effects caused by NEFAs. This result may suggest that vitamin E can assist bovine PBLs in resisting the immune suppression caused by an NEB during the transition period.

Funder

Ministry of Science and Technology, Taiwan

iEGG and Animal Biotechnology Center from the Feature Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3