Transcriptomic Association Analysis of the Metabolic Mechanism of Sulfamethoxazole in Channel Catfish (Ictalurus punctatus)

Author:

Du Xiangxuan12ORCID,Sun Ruyu12,Zhang Lei12ORCID,Liu Yongtao123ORCID,Ai Xiaohui1234

Affiliation:

1. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China

2. Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China

3. Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan 430223, China

4. Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing 100141, China

Abstract

Sulfamethoxazole is a widely used antimicrobial drug used to treat bacterial diseases in aquaculture. To understand the gene expression in channel catfish liver after treatment with sulfamethoxazole, in this study, the treatment group received sulfamethoxazole (100 mg/kg bw), which was administered orally once, and samples were taken at 5 h, 12 h, and 6 d after the administration of sulfamethoxazole, while the control group was orally administered sterile water. To further identify potentially significant genes, a transcriptome analysis using RNA-seq was carried out. More than 50 million high-quality reads were found. After filtering and quality analysis, these reads were identified as 54,169,682, 51,313,865, 51,608,845, and 49,333,491. After counting 23,707 of these transcripts for gene expression, it was discovered that 14,732 of them had genes with differential expression. Moreover, we found that the annotation with the most GO variation was “cellular process” (1616 genes), “metabolic process” (1268 genes), “binding” (1889 genes), and “catalytic activity” (1129 genes). KEGG pathways showed that the “metabolic pathway” was the pathway that was significantly enriched in both experimental groups when comparing the experimental groups: 5 h and 12 h (128 genes); 5 h and 6 d (332 genes); and 12 h and 6 d (348 genes). Also, UDP- glucuronosyltransferase (ugt), which is associated with glucuronidation, and UDP-glucuronosyltransferase 2C1-like (ugt2a1) showed significant upregulation. Carboxylesterase 5A-like (ces3), which promotes fatty acyl and cholesteryl ester metabolism, and the glutathione transferase family were upregulated in the expression of sulfamethoxazole metabolism in the liver, which significantly affected the metabolic effects of the drug. Meanwhile, dypd, uck2b, and rrm2, which are related to nucleotide synthesis and metabolism, were upregulated. Our study extends the knowledge of gene expression in drug metabolism in channel catfish and further provides insight into the molecular mechanism of sulfamethoxazole metabolism.

Funder

National Key Research and Development Program of China

China (Guangxi)-ASEAN key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs

Central Public-interest Scientific Institution Basal Research Fund, CAFS

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3