The Assembly of Flagella in Enteropathogenic Escherichia coli Requires the Presence of a Functional Type III Secretion System

Author:

Soria-Bustos JorgeORCID,Saldaña-Ahuactzi ZeusORCID,Samadder Partha,Yañez-Santos Jorge A.ORCID,Laguna Ygnacio Martínez,Cedillo-Ramírez María L.,Girón Jorge A.

Abstract

In enteropathogenic Escherichia coli (EPEC), the production of flagella and the type III secretion system (T3SS) is activated in the presence of host cultured epithelial cells. The goal of this study was to investigate the relationship between expression of flagella and the T3SS. Mutants deficient in assembling T3SS basal and translocon components (ΔespA, ΔespB, ΔespD, ΔescC, ΔescN, and ΔescV), and in secreting effector molecules (ΔsepD and ΔsepL) were tested for flagella production under several growth conditions. The ΔespA mutant did not produce flagella in any condition tested, although fliC was transcribed. The remaining mutants produced different levels of flagella upon growth in LB or in the presence of cells but were significantly diminished in flagella production after growth in Dulbecco’s minimal essential medium. We also investigated the role of virulence and global regulator genes in expression of flagella. The ΔqseB and ΔqseC mutants produced abundant flagella only when growing in LB and in the presence of HeLa cells, indicating that QseB and QseC act as negative regulators of fliC transcription. The ΔgrlR, ΔperA, Δler, Δhns, and Δfis mutants produced low levels of flagella, suggesting these regulators are activators of fliC expression. These data suggest that the presence of an intact T3SS is required for assembly of flagella highlighting the existence in EPEC of a cross-talk between these two virulence-associated T3SSs.

Funder

NIH

VIEP, BUAP

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3