Ononitol Monohydrate—A Glycoside Potentially Inhibit HT-115 Human Colorectal Cancer Cell Proliferation through COX-2/PGE-2 Inflammatory Axis Regulations

Author:

Subash-Babu PanduranganORCID,Aladel AlanoudORCID,Almanaa Taghreed N.,AlSedairy Sahar AbdulazizORCID,Alshatwi Ali A.

Abstract

We aimed to inhibit HT-115 human colorectal cancer cell proliferation using ononitol monohydrate (OMH), a bioactive principle isolated from Cassia tora (L.). The cytotoxicity of OMH has been assayed using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide), cell and nuclear morphology, and apoptosis mechanisms have been analyzed using real-time PCR. Higher doses of OMH potentially inhibit 84% of HT-115 cell viability; we observed that the IC50 level was 3.2 µM in 24 h and 1.5 µM in 48 h. The treatment with 3.2 µM of OMH for 48 h characteristically showed 64% apoptotic cells and 3% necrotic cells, confirmed by propidium iodide and acridine orange/ethidium bromide (AO/ErBr) staining. We found the overexpression of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE-2) in the control HT-115 cells, which was directly associated with colorectal tumorigenesis. However, 3.2 µM of OMH treatment to HT-115 cells for 48 h significantly reduced inflammatory genes, such as TNF-α/IL-1β and COX-2/PGE-2. The downregulation of COX-2 and PGE-2 was more significant with the 3.2 µM dose when compared to the 1.5 µM dose of OMH. Additionally, the protein levels of COX-2 and PGE-2 were decreased in the 3.2 µM OMH-treated cells compared to the control. We found significantly (p ≤ 0.01) increased mRNA expression levels of tumor-suppressor genes, such as pRb2, Cdkn1a, p53, and caspase-3, and decreased Bcl-2, mdm2, and PCNA after 48 h was confirmed with apoptotic stimulation. In conclusion, the antiproliferative effect of OMH via the early suppression of protumorigenic inflammatory agents TNF-α/IL-1β, COX-2/PGE-2 expression, and the increased expression levels of tumor-suppressor genes Cdkn1a and pRb2, which enhanced the activation of Bax and p53.

Funder

King Saud University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3