Improving Reporter Gene Assay Methodology for Evaluating the Ability of Compounds to Restore P53 Activity

Author:

Han Xinle,Du Jun,Shi Dandan,Li Lingjie,Li Dandan,Zhang Kun,Lin Suwen,Zhu Jingzhong,Huang Zoufang,Zhou You,Fang ZhengyuORCID

Abstract

Tumor suppressor protein P53 induces cycle arrest and apoptosis by mediating the transcriptional expression of its target genes. Mutations causing conformational abnormalities and post-translational modifications that promote degradation are the main reasons for the loss of P53 function in tumor cells. Reporter gene assays that can scientifically reflect the biological function can help discover the mechanism and therapeutic strategies that restore P53 function. In the reporter gene system of this work, tetracycline-inducible expression of wild-type P53 was used to provide a fully activated state as a 100% activity reference for the objective measurement of biological function. It was confirmed by RT-qPCR, cell viability assay, immunofluorescence, and Western blot analysis that the above-mentioned reporter gene system could correctly reflect the differences in biological activity between the wild-type and mutants. After that, the system was tentatively used for related mechanism research and compound activity evaluation. Through the tetracycline-induced co-expression of wild-type P53 and mutant P53 in exact proportion, it was observed that the response modes of typical transcriptional response elements (TREs) to dominant negative P53 mutation effect were not exactly the same. Compared to the relative multiple-to-solvent control, the activity percentage relative to the 100% activity reference of wild-type P53 can better reflect the actual influence of the so-called P53 mutant reactivator. Similarly, relative to the 100% activity reference, it can objectively reflect the biological effects caused by the inhibitor of P53 negative factors, such as MDM2. In conclusion, this study provides a 100% activity reference and a reliable calculation model for relevant basic research and drug development.

Funder

Medical Research Fund of Guangdong Province

Shenzhen Science and Technology Plan of Basic Research Projects

Science, Technology and Innovation Committee of Shenzhen

Shenzhen’s Sanming Project

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3