In Vivo Preclinical Assessment of β-Amyloid–Affine [11C]C-PIB Accumulation in Aluminium-Induced Alzheimer’s Disease-Resembling Hypercholesterinaemic Rat Model

Author:

Képes Zita,Barkóczi Alexandra,Szabó Judit P.,Kálmán-Szabó Ibolya,Arató Viktória,Jószai István,Deák Ádám,Kertész IstvánORCID,Hajdu IstvánORCID,Trencsényi GyörgyORCID

Abstract

Aluminum (Al) excess and hypercholesterinaemia are established risks of Alzheimer’s disease (AD). The aim of this study was to establish an AD-resembling hypercholesterinaemic animal model—with the involvement of 8 week and 48 week-old Fischer-344 rats—by Al administration for the safe and rapid verification of β-amyloid-targeted positron emission tomography (PET) radiopharmaceuticals. Measurement of lipid parameters and β-amyloid–affine [11C]C-Pittsburgh Compound B ([11C]C-PIB) PET examinations were performed. Compared with the control, the significantly elevated cholesterol and LDL levels of the rats receiving the cholesterol-rich diet support the development of hypercholesterinaemia (p ≤ 0.01). In the older cohort, a notably increased age-related radiopharmaceutical accumulation was registered compared to in the young (p ≤ 0.05; p ≤ 0.01). A monotherapy-induced slight elevation of mean standardised uptake values (SUVmean) was statistically not significant; however, adult rats administered a combined diet expressed remarkable SUVmean increment compared to the adult control (SUVmean: from 0.78 ± 0.16 to 1.99 ± 0.28). One and two months after restoration to normal diet, the cerebral [11C]C-PIB accumulation of AD-mimicking animals decreased by half and a third, respectively, to the baseline value. The proposed in vivo Al-induced AD-resembling animal system seems to be adequate for the understanding of AD neuropathology and future drug testing and radiopharmaceutical development.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3