Current Knowledge on Bee Innate Immunity Based on Genomics and Transcriptomics

Author:

Zhao XiaomengORCID,Liu YanjieORCID

Abstract

As important pollinators, bees play a critical role in maintaining the balance of the ecosystem and improving the yield and quality of crops. However, in recent years, the bee population has significantly declined due to various pathogens and environmental stressors including viruses, bacteria, parasites, and increased pesticide application. The above threats trigger or suppress the innate immunity of bees, their only immune defense system, which is essential to maintaining individual health and that of the colony. In addition, bees can be divided into solitary and eusocial bees based on their life traits, and eusocial bees possess special social immunities, such as grooming behavior, which cooperate with innate immunity to maintain the health of the colony. The omics approach gives us an opportunity to recognize the distinctive innate immunity of bees. In this regard, we summarize innate bee immunity from a genomic and transcriptomic perspective. The genetic characteristics of innate immunity were revealed by the multiple genomes of bees with different kinds of sociality, including honeybees, bumblebees, wasps, leaf-cutter bees, and so on. Further substantial transcriptomic data of different tissues from diverse bees directly present the activation or suppression of immune genes under the infestation of pathogens or toxicity of pesticides.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference102 articles.

1. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers;Science,2015

2. Hristov, P., Shumkova, R., Palova, N., and Neov, B. (2020). Factors Associated with Honey Bee Colony Losses: A Mini-Review. Vet. Sci., 7.

3. Are bee diseases linked to pesticides?—A brief review;Environ. Int.,2016

4. Global Trends in Bumble Bee Health;Annu. Rev. Entomol.,2020

5. Kluser, S., and Peduzzi, P. (2007). Global Pollinator Decline: A Literature Review, UNEP/GRIDEurope.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3