The Discovery of Novel Ferulic Acid Derivatives Incorporating Substituted Isopropanolamine Moieties as Potential Tobacco Mosaic Virus Helicase Inhibitors

Author:

Li Zhenxing,Yang Binxin,Liu Hongwu,Ding Yue,Fang Zimian,Shao Wubin,Qi Puying,Zhou Xiang,Liu Liwei,Yang SongORCID

Abstract

Target-based drug design, a high-efficiency strategy used to guide the development of novel pesticide candidates, has attracted widespread attention. Herein, various natural-derived ferulic acid derivatives incorporating substituted isopropanolamine moieties were designed to target the tobacco mosaic virus (TMV) helicase. Bioassays demonstrating the optimized A19, A20, A29, and A31 displayed excellent in vivo antiviral curative abilities, affording corresponding EC50 values of 251.1, 336.2, 347.1, and 385.5 μg/mL, which visibly surpassed those of commercial ribavirin (655.0 μg/mL). Moreover, configurational analysis shows that the R-forms of target compounds were more beneficial to aggrandize antiviral profiles. Mechanism studies indicate that R-A19 had a strong affinity (Kd = 5.4 μM) to the TMV helicase and inhibited its ability to hydrolyze ATP (50.61% at 200 μM). Meanwhile, A19 could down-regulate the expression of the TMV helicase gene in the host to attenuate viral replication. These results illustrate the excellent inhibitory activity of A19 towards the TMV helicase. Additionally, docking simulations uncovered that R-A19 formed more hydrogen bonds with the TMV helicase in the binding pocket. Recent studies have unambiguously manifested that these designed derivatives could be considered as promising potential helicase-based inhibitors for plant disease control.

Funder

National Natural Science Foundation of China

the Guizhou Provincial S&T Project

the Guizhou Province

Program of Introducing Talents of Discipline to Universities of China

GZU (Guizhou University) Found for Newly Enrolled Talent

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3