In Silico Screening of Metal-Organic Frameworks for Formaldehyde Capture with and without Humidity by Molecular Simulation

Author:

Li WeiORCID,Liang Tiangui,Lin Yuanchuang,Wu Weixiong,Li SongORCID

Abstract

Capturing formaldehydes (HCHO) from indoor air with porous adsorbents still faces challenges due to their low capacity and poor selectivity. Metal-organic frameworks (MOFs) with tunable pore properties were regarded as promising adsorbents for HCHO removal. However, the water presence in humid air heavily influences the formaldehyde capture performance due to the competition adsorption. To find suitable MOFs for formaldehyde capture and explore the relationship between MOFs structure and performance both in dry air and humid air, we performed grand canonical Monte Carlo (GCMC) molecular simulations to obtain working capacity and selectivity that evaluated the HCHO capture performance of MOFs without humidity. The results reveal that small pore size (~5 Å) and moderate heat of adsorption (40–50 kJ/mol) are favored for HCHO capture without water. It was found that the structure with a 3D cage instead of a 2D channel benefits the HCHO adsorption. Atoms in these high-performing MOFs should possess relatively small charges, and large Lennard-jones parameters were also preferred. Furthermore, it was indicated that Henry’s constant (KH) can reflect the HCHO adsorption performance without humidity, in which the optimal range is 10−2–101. Hence, Henry’s constant selectivity of HCHO over water (SKH HCHO/H2O) and HCHO over mixture components (H2O, N2, and O2) was obtained to screen MOFs at an 80% humidity condition. It was suggested that SKH for the mixture component overestimates the influence of N2 and O2, in which the top structures absorb a quantity of water in GCMC simulation, while SKH HCHO/H2O can efficiently find high-performing MOFs for HCHO capture at humidity in low adsorption pressure. The ECATAT found in this work has 0.64 mol/kg working capacity, and barely adsorbs water during 0–1 bar, which is the promising candidate MOF for HCHO capture.

Funder

Fundamental Research Funds for the Central Universities

GuangZhou Basic and Applied Basic Research Foundation

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3