Abstract
There is increasing interest in the therapeutic potential of psilocybin. In rodents, the serotonin precursor, 5-hydroxytryptophan (5-HTP) and psilocybin induce a characteristic 5-HT2A receptor (5-HT2AR)-mediated head twitch response (HTR), which is correlated with the human psychedelic trip. We examined the role of other serotonergic receptors and the trace amine -associated receptor 1 (TAAR1) in modulating 5-HTP- and psilocybin-induced HTR. Male C57BL/6J mice (11 weeks, ~30 g) were administered 5-HTP, 50–250 mg/kg i.p., 200 mg/kg i.p. after pretreatment with 5-HT/TAAR1 receptor modulators, psilocybin 0.1–25.6 mg/kg i.p. or 4.4 mg/kg i.p., immediately preceded by 5-HT/TAAR1 receptor modulators. HTR was assessed in a custom-built magnetometer. 5-HTP and psilocybin induced a dose-dependent increase in the frequency of HTR over 20 min with attenuation by the 5-HT2AR antagonist, M100907, and the 5-HT1AR agonist, 8-OH-DPAT. The 5-HT2CR antagonist, RS-102221, enhanced HTR at lower doses but reduced it at higher doses. The TAAR1 antagonist, EPPTB, reduced 5-HTP- but not psilocybin-induced HTR. We have confirmed the key role of 5-HT2AR in HTR, an inhibitory effect of 5-HT1AR, a bimodal contribution of 5-HT2CR and a role of TAAR1 in modulating HTR induced by 5-HTP. Compounds that modulate psychedelic-induced HTR have important potential in the emerging therapeutic use of these compounds.
Funder
Back of the Yards algae sciences
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis