Restraint Stress and Repeated Corticosterone Administration Differentially Affect Neuronal Excitability, Synaptic Transmission and 5-HT7 Receptor Reactivity in the Dorsal Raphe Nucleus of Young Adult Male Rats

Author:

Bąk Joanna,Bobula BartoszORCID,Hess GrzegorzORCID

Abstract

Exogenous corticosterone administration reduces GABAergic transmission and impairs its 5-HT7 receptor-dependent modulation in the rat dorsal raphe nucleus (DRN), but it is largely unknown how neuronal functions of the DRN are affected by repeated physical and psychological stress. This study compared the effects of repeated restraint stress and corticosterone injections on DRN neuronal excitability, spontaneous synaptic transmission, and its 5-HT7 receptor-dependent modulation. Male Wistar rats received corticosterone injections for 7 or 14 days or were restrained for 10 min twice daily for 3 days. Repeated restraint stress and repeated corticosterone administration evoked similar changes in performance in the forced swim test. They increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) recorded from DRN neurons. In contrast to the treatment with corticosterone, restraint stress-induced changes in sEPSC kinetics and decreased intrinsic excitability of DRN neurons did not modify inhibitory transmission. Repeated injections of the 5-HT7 receptor antagonist SB 269970 ameliorated the effects of restraint on excitability and sEPSC frequency but did not restore the altered kinetics of sEPSCs. Thus, repeated restraint stress and repeated corticosterone administration differ in consequences for the intrinsic excitability of DRN projection neurons and their excitatory and inhibitory synaptic inputs. Effects of repeated restraint stress on DRN neurons can be partially abrogated by blocking the 5-HT7 receptor.

Funder

National Science Center, Poland

Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3