Study of Membrane-Immobilized Oxidoreductases in Wastewater Treatment for Micropollutants Removal

Author:

Zdarta AgataORCID,Zdarta JakubORCID

Abstract

The development of efficient strategies for wastewater treatment to remove micropollutants is of the highest importance. Hence, in this study, we presented a rapid approach to the production of biocatalytic membranes based on commercially available cellulose membrane and oxidoreductase enzymes including laccase, tyrosinase, and horseradish peroxidase. Effective enzyme deposition was confirmed based on Fourier transform infrared spectra, whereas results of spectrophotometric measurements showed that immobilization yield for all proposed systems exceeded 80% followed by over 80% activity recovery, with the highest values (over 90%) noticed for the membrane-laccase system. Further, storage stability and reusability of the immobilized enzyme were improved, reaching over 75% after, respectively, 20 days of storage, and 10 repeated biocatalytic cycles. The key stage of the study concerned the use of produced membranes for the removal of hematoporphyrin, (2,4-dichlorophenoxy)acetic acid (2,4-D), 17α-ethynylestradiol, tetracycline, tert-amyl alcohol (anesthetic drug), and ketoprofen methyl ester from real wastewater sampling at various places in the wastewater treatment plant. Although produced membranes showed mixed removal rates, all of the analyzed compounds were at least partially removed from the wastewater. Obtained data clearly showed, however, that composition of the wastewater matrix, type of pollutants as well as type of enzyme strongly affect the efficiency of enzymatic treatment of wastewater.

Funder

National Science Centre, Poland

Foundation for Polish Science

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference48 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3