The Novel AT2 Receptor Agonist β-Pro7-AngIII Exerts Cardiac and Renal Anti-Fibrotic and Anti-Inflammatory Effects in High Salt-Fed Mice

Author:

Wang Yan,Yodgee Jonathan,Del Borgo Mark,Spizzo Iresha,Nguyen Levi,Aguilar Marie-IsabelORCID,Denton Kate M.,Samuel Chrishan S.ORCID,Widdop Robert E.ORCID

Abstract

A high salt (HS) diet is associated with an increased risk for cardiovascular diseases (CVDs) and fibrosis is a key contributor to the organ dysfunction involved in CVDs. The activation of the renin angiotensin type 2 receptor (AT2R) has been considered as organ protective in many CVDs. However, there are limited AT2R-selective agonists available. Our first reported β-substituted angiotensin III peptide, β-Pro7-AngIII, showed high selectivity for the AT2R. In the current study, we examine the potential anti-fibrotic and anti-inflammatory effects of this novel AT2R-selective peptide on HS-induced organ damage. FVB/N mice fed with a 5% HS diet for 8 weeks developed cardiac and renal fibrosis and inflammation, which were associated with increased TGF-β1 levels in heart, kidney and plasma. Four weeks’ treatment (from weeks 5–8) with β-Pro7-AngIII inhibited the HS-induced cardiac and renal fibrosis and inflammation. These protective effects were accompanied by reduced local and systemic TGF-β1 as well as reduced cardiac myofibroblast differentiation. Importantly, the anti-fibrotic and anti-inflammatory effects caused by β-Pro7-AngIII were attenuated by the AT2R antagonist PD123319. These results demonstrate, for the first time, the cardio- and reno-protective roles of the AT2R-selective β-Pro7-AngIII, highlighting it as an important therapeutic that can target the AT2R to treat end-organ damage.

Funder

National Health and Medical Research Council (NHMRC) of Australia Project Grant to REW

NHMRC Senior Research Fellowships to CSS

KMD

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3