Bioinspired Pd-Cu Alloy Nanoparticles as Accept Agent for Dye Degradation Performances

Author:

Chen Shiyue,Yang Yujun,Zhang Mingjun,Ma Xiaohong,He Xiaoxiao,Wang Teng,Hu Xi,Mao Xiang

Abstract

Dye degradation is a key reaction in organic decomposition production through electron donor transferring. Palladium (Pd) is the best-known element for synthesis Pd-based catalyst, the surface status determines the scope of relative applications. Here we first prepare Pd-Cu alloy nanoparticles (NPs) by co-reduction of Cu(acac)2 (acac = acetylacetonate) and Pd(C5HF6O2)2 in the presence of sodium borohydride (NaBH4) and glutathione (GSH). The obtained Pd-Cu is about ~10 nm with super-hydrophilicity in aqueous mediums. The structural analysis clearly demonstrated the uniform distribution of Pd and Cu element. The colloidal solution keeps stability even during 30 days. Bimetallic Pd-Cu NPs shows biocompatibility in form of cell lines (IMEF, HACAT, and 239 T) exposed to colloidal solution (50 µg mL−1) for 2 days. It shows the catalytic multi-performance for dye degradation such as methyl orange (MO), rhodamine B (RhB), and methylene blue (MB), respectively. The as-synthesized nanoparticles showed one of the best multiple catalytic activities in the industrially important (electro)-catalytic reduction of 4-nitrophenol (4-NP) to corresponding amines with noticeable reduced reaction time and increased rate constant without the use of any large area support. In addition, it exhibits peroxidase-like activity in the 3, 3′, 5, 5′-Tetramethylbenzidine (TMB) color test and exhibit obvious difference with previous individual metal materials. By treated with high intensity focused ultrasound filed (HIFU), Pd-Cu NPs might be recrystallized and decreased the diameters than before. The enhancement in catalytic performance is observed obviously. This work expedites rational design and synthesis of the high-hierarchy alloy catalyst for biological and environment-friendly agents.

Funder

Chongqing Municipal Natural Science Foundation

Scientific and Technology Research program of Chongqing Municipal Education Commission

Science and Technology Planning Project of Yuzhong District

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3