Bacteriophage-Mediated Cancer Gene Therapy

Author:

Petrov GlebORCID,Dymova MayaORCID,Richter Vladimir

Abstract

Bacteriophages have long been considered only as infectious agents that affect bacterial hosts. However, recent studies provide compelling evidence that these viruses are able to successfully interact with eukaryotic cells at the levels of the binding, entry and expression of their own genes. Currently, bacteriophages are widely used in various areas of biotechnology and medicine, but the most intriguing of them is cancer therapy. There are increasing studies confirming the efficacy and safety of using phage-based vectors as a systemic delivery vehicle of therapeutic genes and drugs in cancer therapy. Engineered bacteriophages, as well as eukaryotic viruses, demonstrate a much greater efficiency of transgene delivery and expression in cancer cells compared to non-viral gene transfer methods. At the same time, phage-based vectors, in contrast to eukaryotic viruses-based vectors, have no natural tropism to mammalian cells and, as a result, provide more selective delivery of therapeutic cargos to target cells. Moreover, numerous data indicate the presence of more complex molecular mechanisms of interaction between bacteriophages and eukaryotic cells, the further study of which is necessary both for the development of gene therapy methods and for understanding the cancer nature. In this review, we summarize the key results of research into aspects of phage–eukaryotic cell interaction and, in particular, the use of phage-based vectors for highly selective and effective systemic cancer gene therapy.

Funder

Russian State-funded budget project of ICBFM SB RAS

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference109 articles.

1. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries;CA Cancer J. Clin.,2021

2. Cancer gene therapy;Technol. Cancer Res. Treat.,2005

3. Viral vectors: From virology to transgene expression;Br. J. Pharmacol.,2009

4. Engineering targeted viral vectors for gene therapy;Nat. Rev. Genet.,2007

5. Phage-Mediated Gene Therapy;Curr. Gene Ther.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3