Surface Protection of Quaternary Gold Alloys by Thiol Self-Assembled Monolayers

Author:

Sánchez-Obrero GuadalupeORCID,Humanes Irene,Madueño RafaelORCID,Sevilla José Manuel,Pineda Teresa,Blázquez Manuel

Abstract

This work deals with a physical and chemical surface characterization of quaternary 18K, 14K, and 9K gold alloys and pure polycrystalline gold substrates. Surface microstructure and composition are evaluated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray fluorescence spectroscopy. Corrosion resistance of 18K gold alloys is explored by potentiodynamic polarization showing the influence of the manufacturing process on materials fabricated as plates and wires. The research is also in the framework of one of the most common strategies on the modification of metallic surface properties, i.e., the building of self-assembled monolayers (SAM) from organic thiols. The metal affinity of the head group to produce the coating of the substrate by covalent binding is approached by using thiol compounds with different molecular structures and functional group chemistries exposed to an electrolyte solution. Therefore, a comparative study on the surface protection of a quaternary 18K gold alloy and pure gold substrates by SAMs of 6-mercaptopurine (6MP), 1-decanethiol (DT), and 11-mercaptoundecanoic acid (MUA) has been carried out. Surface modification and SAM organization are followed by cyclic voltammetry (CV), and the behavior of the double layer of the electrode–electrolyte interface is evaluated by electrochemical impedance spectroscopy (EIS). The study of these materials allows us to extract fundamental knowledge for its potential application in improving the bioactive properties of different jewelry pieces based on 18K gold alloys.

Funder

Ministerio de Ciencia e Innovación

Junta de Andalucía

Universidad de Córdoba

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3