A Graph Neural Network Approach for the Analysis of siRNA-Target Biological Networks

Author:

La Rosa MassimoORCID,Fiannaca AntoninoORCID,La Paglia LauraORCID,Urso AlfonsoORCID

Abstract

Many biological systems are characterised by biological entities, as well as their relationships. These interaction networks can be modelled as graphs, with nodes representing bio-entities, such as molecules, and edges representing relations among them, such as interactions. Due to the current availability of a huge amount of biological data, it is very important to consider in silico analysis methods based on, for example, machine learning, that could take advantage of the inner graph structure of the data in order to improve the quality of the results. In this scenario, graph neural networks (GNNs) are recent computational approaches that directly deal with graph-structured data. In this paper, we present a GNN network for the analysis of siRNA–mRNA interaction networks. siRNAs, in fact, are small RNA molecules that are able to bind to target genes and silence them. These events make siRNAs key molecules as RNA interference agents in many biological interaction networks related to severe diseases such as cancer. In particular, our GNN approach allows for the prediction of the siRNA efficacy, which measures the siRNA’s ability to bind and silence a gene target. Tested on benchmark datasets, our proposed method overcomes other machine learning algorithms, including the state-of-the-art predictor based on the convolutional neural network, reaching a Pearson correlation coefficient of approximately 73.6%. Finally, we proposed a case study where the efficacy of a set of siRNAs is predicted for a gene of interest. To the best of our knowledge, GNNs were used for the first time in this scenario.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3