Diacylglycerol Acyltransferase 3(DGAT3) Is Responsible for the Biosynthesis of Unsaturated Fatty Acids in Vegetative Organs of Paeonia rockii

Author:

Han Longyan,Zhai Yuhui,Wang Yumeng,Shi Xiangrui,Xu Yanfeng,Gao Shuguang,Zhang Man,Luo JianrangORCID,Zhang Qingyu

Abstract

‘Diacylglycerol acyltransferase (DGAT)’ acts as a key rate-limiting enzyme that catalyzes the final step of the de novo biosynthesis of triacylglycerol (TAG). The study was to characterize the function of the DGAT3 gene in Paeonia rockii, which is known for its accumulation of high levels of unsaturated fatty acids (UFAs). We identified a DGAT3 gene which encodes a soluble protein that is located within the chloroplasts of P. rockii. Functional complementarity experiments in yeast demonstrated that PrDGAT3 restored TAG synthesis. Linoleic acid (LA, C18:2) and α-linolenic acid (ALA, C18:3) are essential unsaturated fatty acids that cannot be synthesized by the human body. Through the yeast lipotoxicity test, we found that the yeast cell density was largely increased by adding exogenous LA and, especially, ALA to the yeast medium. Further ectopic transient overexpression in Nicotiana benthamiana leaf tissue and stable overexpression in Arabidopsis thaliana indicated that PrDGAT3 significantly enhanced the accumulation of the TAG and UFAs. In contrast, we observed a significant decrease in the total fatty acid content and in several major fatty acids in PrDGAT3-silenced tree peony leaves. Overall, PrDGAT3 is important in catalyzing TAG synthesis, with a substrate preference for UFAs, especially LA and ALA. These results suggest that PrDGAT3 may have practical applications in improving plant lipid nutrition and increasing oil production in plants.

Funder

Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Shaanxi Province

Postdoctoral Fund of Shaanxi Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference65 articles.

1. Multiple species of wild tree peonies gave rise to the ‘king of flowers’, Paeonia suffruticosa Andrews;Proc. Biol. Sci.,2014

2. Characteristics of Paeonia ostii seed oil body and OLE17.5 determining oil body morphology;Food Chem.,2020

3. Wrinkled1 Accelerates Flowering and Regulates Lipid Homeostasis between Oil Accumulation and Membrane Lipid Anabolism in Brassica napus;Front. Plant Sci.,2016

4. Fatty Acid and Associated Gene Expression Analyses of Three Tree Peony Species Reveal Key Genes for alpha-Linolenic Acid Synthesis in Seeds;Front. Plant Sci.,2018

5. Oil accumulation in leaves directed by modification of fatty acid breakdown and lipid synthesis pathways;Plant Biotechnol. J.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3