Biodegradation and Metabolic Pathway of the Neonicotinoid Insecticide Thiamethoxam by Labrys portucalensis F11

Author:

Boufercha OumeimaORCID,Monforte Ana R.,Boudemagh Allaoueddine,Ferreira António C.,Castro Paula M. L.,Moreira Irina S.ORCID

Abstract

Thiamethoxam (TMX) is an effective neonicotinoid insecticide. However, its widespread use is detrimental to non-targeted organisms and water systems. This study investigates the biodegradation of this insecticide by Labrys portucalensis F11. After 30 days of incubation in mineral salt medium, L. portucalensis F11 was able to remove 41%, 35% and 100% of a supplied amount of TMX (10.8 mg L−1) provided as the sole carbon and nitrogen source, the sole carbon and sulfur source and as the sole carbon source, respectively. Periodic feeding with sodium acetate as the supplementary carbon source resulted in faster degradation of TMX (10.8 mg L−1); more than 90% was removed in 3 days. The detection and identification of biodegradation intermediates was performed by UPLC-QTOF/MS/MS. The chemical structure of 12 metabolites is proposed. Nitro reduction, oxadiazine ring cleavage and dechlorination are the main degradation pathways proposed. After biodegradation, toxicity was removed as indicated using Aliivibrio fischeri and by assessing the synthesis of an inducible β-galactosidase by an E. coli mutant (Toxi-Chromo test). L. portucalensis F11 was able to degrade TMX under different conditions and could be effective in bioremediation strategies.

Funder

Ministry of Higher Education and Scientific Research

National Funds from FCT–Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3