A Hybrid Docking and Machine Learning Approach to Enhance the Performance of Virtual Screening Carried out on Protein–Protein Interfaces

Author:

Singh NateshORCID,Villoutreix Bruno O.ORCID

Abstract

The modulation of protein–protein interactions (PPIs) by small chemical compounds is challenging. PPIs play a critical role in most cellular processes and are involved in numerous disease pathways. As such, novel strategies that assist the design of PPI inhibitors are of major importance. We previously reported that the knowledge-based DLIGAND2 scoring tool was the best-rescoring function for improving receptor-based virtual screening (VS) performed with the Surflex docking engine applied to several PPI targets with experimentally known active and inactive compounds. Here, we extend our investigation by assessing the vs. potential of other types of scoring functions with an emphasis on docking-pose derived solvent accessible surface area (SASA) descriptors, with or without the use of machine learning (ML) classifiers. First, we explored rescoring strategies of Surflex-generated docking poses with five GOLD scoring functions (GoldScore, ChemScore, ASP, ChemPLP, ChemScore with Receptor Depth Scaling) and with consensus scoring. The top-ranked poses were post-processed to derive a set of protein and ligand SASA descriptors in the bound and unbound states, which were combined to derive descriptors of the docked protein-ligand complexes. Further, eight ML models (tree, bagged forest, random forest, Bayesian, support vector machine, logistic regression, neural network, and neural network with bagging) were trained using the derivatized SASA descriptors and validated on test sets. The results show that many SASA descriptors are better than Surflex and GOLD scoring functions in terms of overall performance and early recovery success on the used dataset. The ML models were superior to all scoring functions and rescoring approaches for most targets yielding up to a seven-fold increase in enrichment factors at 1% of the screened collections. In particular, the neural networks and random forest-based ML emerged as the best techniques for this PPI dataset, making them robust and attractive vs. tools for hit-finding efforts. The presented results suggest that exploring further docking-pose derived SASA descriptors could be valuable for structure-based virtual screening projects, and in the present case, to assist the rational design of small-molecule PPI inhibitors.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference67 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3