Rab32/38-Dependent and -Independent Transport of Tyrosinase to Melanosomes in B16-F1 Melanoma Cells

Author:

Nishizawa Aya,Maruta Yuto,Fukuda MitsunoriORCID

Abstract

B16-F1 melanoma cells have often been used as a model to investigate melanogenesis, but the evidence that melanosome biogenesis and transport occur by the same mechanisms in normal melanocytes and B16-F1 cells is insufficient. In this study, we established knockout B16-F1 cells for each of several key factors in melanogenesis, i.e., tyrosinase (Tyr), Hps4, Rab27A, and Rab32·Rab38 (Rab32/38), and then compared their phenotypes with the phenotypes of corresponding mutant mouse melanocyte cell lines, i.e., melan-c, melan-le, melan-ash, and Rab32-deficient melan-cht cells, respectively. The results showed that Tyr and Rab27A are also indispensable for melanin synthesis and peripheral melanosome distribution, respectively, in B16-F1 cells, but that Hps4 or its downstream targets Rab32/38 are not essential for Tyr transport in B16-F1 cells, suggesting the existence of a Rab32/38-independent Tyr transport mechanism in B16-F1 cells. We then performed comprehensive knockdown screening of Rab small GTPases and identified Rab10 and Rab24, previously uncharacterized Rabs in melanocytes, as being involved in Tyr transport under Rab32/38-null conditions. Our findings indicate a difference between the Tyr transport mechanism in melanocytes and B16-F1 cells in terms of Rab32/38-dependency and a limitation in regard to using melanoma cells as a model for melanocytes, especially when investigating the mechanism of endosomal Tyr transport.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Science Technology Agency

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3