Abstract
The top-tensioned riser is an important equipment in offshore oil and gas development. The hydro-pneumatic tensioner is an essential device to ensure the safety of the top-tensioned riser. To investigate the dynamic performance of the marine platform hydro-pneumatic tensioner, this paper proposed a first-order Taylor approximation method and created the frequency response function of the hydro-pneumatic tensioner. According to the frequency response function, the hydro-pneumatic tensioner is a first-order spring-mass system. With the given parameters, the system stiffness coefficient is 66.1 kN/m, the natural annular frequency is 20.99 rad/s and the damping ratio is 2.23 × 10−4. The effects of the high-pressure accumulator, low-pressure accumulator, hydraulic cylinder and pipeline design parameters on the stiffness coefficient, natural annular frequency and damping ratio are analyzed. The stiffness coefficient can be increased by (1) increasing the high-pressure accumulator pressure and reducing the high-pressure accumulator volume; (2) increasing the pressure of the low-pressure accumulator and reducing the low-pressure accumulator volume; (3) increasing the piston diameter; and vice versa. The natural annular frequency can be increased by: (1) increasing the high-pressure accumulator pressure and reducing the high-pressure accumulator volume; (2) increasing the pressure of the low-pressure accumulator and reducing the low-pressure accumulator volume; (3) increasing the piston diameter; and vice versa. The damping ratio can be increased by increasing the pipeline length and reducing the pipeline inner diameter.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Heilongjiang Provincial Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献